Universal amplitude ratios for three-dimensional self-avoiding walks

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2002 J. Phys. A: Math. Gen. 351501
(http://iopscience.iop.org/0305-4470/35/7/302)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.109
The article was downloaded on 02/06/2010 at 10:41

Please note that terms and conditions apply.

Universal amplitude ratios for three-dimensional self-avoiding walks

Mall Chen ${ }^{1}$ and Keh Ying Lin ${ }^{2}$
${ }^{1}$ Department of Applied Physics, Chung Cheng Institute of Technology, National Defence University, Ta-Hsi Tao-Yuan 335, Taiwan, Republic of China
${ }^{2}$ Department of Physics, National Tsing Hua University, Hsinchu 300, Taiwan, Republic of China
E-mail: lin@phys.nthu.edu.tw

Received 21 November 2001, in final form 10 December 2001
Published 8 February 2002
Online at stacks.iop.org/JPhysA/35/1501

Abstract

We have calculated exactly the number, the mean-square end-to-end distance, the mean-square radius of gyration, and the mean-square distance of a monomer from the origin for n-step self-avoiding walks on the simple cubic, diamond, body-centred cubic and face-centred cubic lattices, respectively, up to 20,30, 16 and 13 steps by a computer. Two universal amplitude ratios are estimated.

PACS numbers: $05.50 .+\mathrm{q}, 05.40 . \mathrm{Fb}$

1. Introduction

A self-avoiding walk (SAW) is a model of a polymer [1]. We are interested in the following functions: (1) the chain generating function for SAWs $C(x)=\sum c_{n} x^{n}$, where c_{n} is the total number of n-step SAWs; (2) the mean-square end-to-end distance of n-step SAWs R_{n}^{2}, (3) the mean-square radius of gyration of n-step SAWs G_{n}^{2} and (4) the mean-square distance of a monomer from the origin of n-step SAWs M_{n}^{2}.

The asymptotic forms at large n are believed to be [2]

$$
\begin{equation*}
c_{n} \approx A \mu^{n} n^{\gamma-1} \quad R_{n}^{2} \approx B n^{2 v} \quad G_{n}^{2} \approx C n^{2 v} \quad M_{n}^{2} \approx D n^{2 v} \tag{1}
\end{equation*}
$$

where μ is called the connective constant. The exponents γ and v depend only on the space dimensionality d but not on the particular lattice chosen. The amplitudes A, B, C, D and the connective constant μ vary from lattice to lattice. Exact values for the exponents have been derived for $d=2$ and the results are $[3,4]$

$$
\begin{equation*}
\gamma=43 / 32=1.34375 \quad v=3 / 4=0.75 \tag{2}
\end{equation*}
$$

For $d=3$ the exact results are not available and we have

$$
\begin{equation*}
\gamma \approx 7 / 6 \quad v \approx 3 / 5 \tag{3}
\end{equation*}
$$

Although the amplitudes are lattice-dependent, Cardy and Saleur [5] used the c-theorem in conformal theory to prove that the amplitude ratios C / B and D / B are universal for twodimensional SAWs. A minor mistake in their work was discovered $[6,7]$ and corrected later [8]. From exact enumeration results for SAWs on the square lattice up to 21 steps and the triangular lattice up to 15 steps, Guttmann and Yang [6] obtained for both lattices

$$
\begin{equation*}
C / B=0.1396 \pm 0.001 \quad D / B=0.4375 \pm 0.002 \tag{4}
\end{equation*}
$$

From a Monte Carlo study of SAWs on the square lattice, Caracciolo et al found that [8]

$$
\begin{equation*}
C / B=0.14026 \pm 0.00011 \quad D / B=0.43962 \pm 0.00033 \tag{5}
\end{equation*}
$$

Lin and Huang [9] studied SAWs on the kagome lattice up to 30 steps and found that

$$
\begin{equation*}
C / B=0.140 \pm 0.001 \quad D / B=0.440 \pm 0.001 \tag{6}
\end{equation*}
$$

The series for the number of three-dimensional SAWs and the corresponding series for the mean-square end-to-end distance have been studied extensively. However, the corresponding series for the mean-square radius of gyration and the series for the mean-square distance of a monomer from the origin have been overlooked. From the standard theory of critical phenomena based on the renormalization group, the amplitude ratios C / B and D / B are universal for SAWs on regular three-dimensional lattices [10]. We have studied numerically four lattices and estimated these two universal ratios.

2. Simple cubic (SC) lattice

In a recent paper [11], the series $C(x)$ for the number of SAWs on the simple cubic lattice has been extended from the previous maximum 23 [12] to 26 steps and the series $\sum c_{n} R_{n}^{2}$ for the mean-square end-to-end distance from 20 to 26 [13]. The estimated values are $\mu=4.68401$, $\gamma=1.1585, v=0.5875, A=1.205$ and $A B=1.476$. Li et al $[10]$ made a high-precision Monte Carlo study of SAWs on simple cubic lattice up to 80000 steps and their results are $B=1.21667 \pm 0.00050, C=0.19455 \pm 0.00007$ and $C / B=0.1599 \pm 0.0002$. Their estimate of the amplitude B is slightly smaller (about 0.7%) than the estimated value given by MacDonald et al [11].

We have calculated the mean-square radius of gyration, and the mean-square distance of a monomer from the origin for n-step self-avoiding walks on the simple cubic lattice up to 20 steps by a computer. The results are given in table 1. For the convenience of readers we also list the number of n-step SAWs and $c_{n} R_{n}^{2}$.

Since the exponent v has been estimated already from a series which contains six more terms than ours, we made biased estimates [14] of C and D with $v=0.5875$ from the data of table 1 using the method of Padé approximants and found that

$$
\begin{equation*}
C=0.192 \pm 0.005 \quad D=0.58 \pm 0.01 \tag{7}
\end{equation*}
$$

From the estimated values of B, C and D, we can obtain the ratios C / B and D / B. However, these two ratios can be estimated directly with greater precision and we shall explain this method in section 6.

3. Diamond (DA) lattice

The series for the number of SAWs and the series for the mean-square end-to-end distance on the diamond lattice were computed by Guttmann [15] up to 27 steps and the estimated values are $\gamma=1.161 \pm 0.002, \nu=0.592 \pm 0.003$ and $x_{c}=\mu^{-1}=0.34734 \pm 0.00002$. We

Table 1. Exact enumeration results for the number, the mean-square end-to-end distance, the mean-square distance of a monomer from the origin and the mean-square radius of gyration for self-avoiding walks on the simple cubic lattice.

n	$c_{n} / 6$	$c_{n} R_{n}^{2} / 6$	$(n+1) c_{n} M_{n}^{2} / 6$	$(n+1)^{2} c_{n} G_{n}^{2} / 6$
1	1	1	1	1
2	5	12	17	22
3	25	97	182	292
4	121	672	1566	2994
5	589	4261	11931	26613
6	2821	25588	83479	212532
7	13565	147821	552108	1583808
8	64661	830576	3489548	11126940
9	308981	4566917	21351857	75021053
10	1468313	24692980	127023801	487286330
11	6989025	131682825	739923498	3079847364
12	33140457	694386864	4228390218	18971359374
13	157329085	3626770709	23809194967	114611086221
14	744818613	18790632772	132218649171	679491899320
15	3529191009	96675376705	726256580504	3970337752176
16	16686979329	494382431552	3947530263656	22868496906360
17	78955042017	2514666026897	21276669105001	130240792686993
18	372953947349	12730690730212	113738242204065	733407393089174
19	1762672203269	64177763220925	603959174412606	4092890484164740
20	8319554639789	322314275563424	3185894424423422	22633188890656962

extended his results to three more steps and calculated the mean-square radius of gyration, and the mean-square distance of a monomer from the origin up to 30 steps. The results are given in table 2.

We made biased estimates of amplitudes by using the method of Padé approximants with $\gamma=1.1585$ and $\nu=0.5875$. The results are

$$
\begin{equation*}
A=1.24 \pm 0.01 \quad B=1.42 \pm 0.01 \quad C=0.226 \pm 0.002 \quad D=0.678 \pm 0.005 \tag{8}
\end{equation*}
$$

The amplitude ratios C / B and D / B are estimated directly and the results are discussed in section 6.

4. Body-centred cubic (BCC) lattice

High-temperature series expansions for the susceptibility and the second correlation moment of the N-vector spin model on the body-centred cubic lattice were obtained by Butera and Comi [16] of order β^{21}. The special case of $N=0$ corresponds to a self-avoiding walk [1] such that the series for the susceptibility corresponds to the $C(x)$ series and the series for the correlation moment to the $\sum c_{n} R_{n}^{2}$ series. The critical point and the exponents are estimated as follows [16]:

$$
\begin{equation*}
x_{c}=0.153131(2) \quad \gamma=1.1612(8) \quad \nu=0.591(2) . \tag{9}
\end{equation*}
$$

From these two series, we made biased estimations for the amplitudes A and B using the method of Padé approximants with $x_{c}=\mu^{-1}=0.153131, \gamma=1.1585$ and $v=0.5875$. The results are

$$
\begin{equation*}
A=1.16 \pm 0.01 \quad B=1.06 \pm 0.01 \tag{10}
\end{equation*}
$$

Table 2. Exact enumeration results for the number, the mean-square end-to-end distance, the mean-square distance of a monomer from the origin and the mean-square radius of gyration for self-avoiding walks on the diamond lattice.

n	$c_{n} / 4$	$c_{n} R_{n}^{2} / 4$	$(n+1) c_{n} M_{n}^{2} / 4$	$(n+1)^{2} c_{n} G_{n}^{2} / 4$
1	1	1	1	1
2	3	8	11	14
3	9	41	74	116
4	27	176	398	746
5	81	689	1883	4121
6	237	2552	8135	20300
7	699	9083	33212	93440
8	2049	31408	129524	405636
9	6015	106239	488507	1687383
10	17547	353304	1789583	6753810
11	51321	1158617	6418654	26307092
12	149499	3756384	22576698	99817558
13	436137	12061945	78233431	371382217
14	1268475	38418328	267277949	1355404008
15	3693663	121504271	903165352	4875193600
16	10730613	381942224	3019423720	17280369496
17	31203621	1194166357	10009581021	60563128677
18	90566913	3715993832	32905022321	209818417170
19	263067933	11514366573	107450446394	720394458228
20	762975129	35543506848	348518726594	2450455002870
21	2214262551	109342447895	1124320164949	8274346086703
22	6417997005	335329803992	3607005563535	27725447501828
23	18612424371	1025473390579	11520096050100	92336430942304
24	53919461865	3127923450864	36622950904364	305538317619516
25	156274048851	9518194702643	115987794015815	1005820707404091
26	452515585203	28900497267032	365901078312447	3292998912340922
27	1310847118053	87574269583237	1150583520143406	10733678967247668
28	3794281468641	264871770584528	3605833053175462	34821964967801834
29	10986440189271	799718478318855	11269062818629937	112538766555627767
30	31789702212633	2410654958503592	35115264324405463	362214141414158224

We calculated the mean-square radius of gyration and the mean-square distance of a monomer from the origin up to 16 steps. The results are given in table 3 . We made biased estimations for the amplitudes C and D with $\nu=0.5875$ and the results are

$$
\begin{equation*}
C=0.166 \pm 0.002 \quad D=0.505 \pm 0.005 \tag{11}
\end{equation*}
$$

The amplitude ratios C / B and D / B are estimated directly and the results are discussed in section 6.

5. Face-centred cubic (FCC) lattice

The coordination number of the face-centred cubic lattice is 12 , which means that at each successive step, there are about ten times as many SAWs as in the preceding step. The first 12 terms of the chain generating function were obtained by Martin et al [17]. This series was later extended to 14 terms [18]. Guttmann [19] studied this series and concluded that $x_{c}=0.099637 \pm 0.000006$ and $\gamma=1.163 \pm 0.002$. We made a biased estimation using the

Table 3. Exact enumeration results for the number, the mean-square end-to-end distance, the mean-square distance of a monomer from the origin and the mean-square radius of gyration for self-avoiding walks on the body-centred cubic lattice.

n	$c_{n} / 8$	$c_{n} R_{n}^{2} / 8$	$(n+1) c_{n} M_{n}^{2} / 8$	$(n+1)^{2} c_{n} G_{n}^{2} / 8$
1	1	1	1	1
2	7	16	23	30
3	49	177	338	548
4	331	1696	4018	7766
5	2245	14917	42395	95581
6	15007	124468	411637	1059212
7	100603	999995	3781364	10958400
8	668965	7819224	33228340	107000732
9	4456585	59853953	282787949	1002919433
10	29536387	450672532	2341138243	9061897542
11	196006195	3347481963	18981640182	79685665460
12	1296083749	24590339688	151031542138	683195865502
13	8578330951	178939306279	1184221616405	5745246546679
14	56629067755	1291795743828	9159456815933	47426867197944
15	374097956053	9261172589741	70078671934528	385878427423912
16	2466416982199	65999364870856	530646513107928	3095508365057224

Table 4. Exact enumeration results for the number, the mean-square end-to-end distance, the mean-square distance of a monomer from the origin and the mean-square radius of gyration for self-avoiding walks on the face-centred cubic lattice.

n	$c_{n} / 12$	$c_{n} R_{n}^{2} / 12$	$(n+1) c_{n} M_{n}^{2} / 12$	$(n+1)^{2} c_{n} G_{n}^{2} / 12$
1	1	1	1	1
2	11	24	35	46
3	117	409	786	1280
4	1225	6012	14354	27930
5	12711	81315	232165	526007
6	131143	1042564	3465621	8967144
7	1347679	12878367	48863948	142226388
8	13808087	154777460	660172360	2135591332
9	141147827	1821449227	8628332223	30716312051
10	1440160797	21081182692	109821362909	426723115802
11	14672058701	240717534413	1367840196838	5761084490984
12	149287922589	2718116571816	16731864664214	75936755874222
13	1517387524783	30405174655267	201568203476849	980723557080247

method of Padé approximants for the amplitude A with $x_{c}=0.099637$ and $\gamma=1.1585$ and found that

$$
\begin{equation*}
A=1.16 \pm 0.02 \tag{12}
\end{equation*}
$$

Majid et al [20] studied the first 12 terms of the series $\sum c_{n} R_{n}^{2}$ and concluded that

$$
\begin{equation*}
B=1.05 \pm 0.03 \quad v=0.5875 \pm 0.0015 \tag{13}
\end{equation*}
$$

We extended their result to one more term and calculated the mean-square radius of gyration, and the mean-square distance of a monomer from the origin up to 13 steps. The results are

Table 5. The ratios r_{n} for the SC, DA, BCC and FCC lattices.

n	SC	BCC	FCC	DA
1	0.250000	0.250000	0.250000	0.250000
2	0.203704	0.208333	0.212963	0.194444
3	0.188144	0.193503	0.195599	0.176829
4	0.178214	0.183160	0.185828	0.169545
5	0.173492	0.177987	0.179688	0.166143
6	0.169509	0.173672	0.175532	0.162338
7	0.167412	0.171226	0.172560	0.160740
8	0.165391	0.168942	0.170343	0.159445
9	0.164271	0.167561	0.168637	0.158829
10	0.163089	0.166178	0.167288	0.157985
11	0.162419	0.165310	0.166201	0.157678
12	0.161663	0.164397	0.165309	0.157235
13	0.161232	0.163812	0.164567	0.157090
14	0.160716	0.163173		0.156801
15	0.160425	0.162759		0.156733
16	0.160058	0.162291		0.156552
17	0.159853			0.156530
18	0.159583			0.156409
19	0.159436			0.156412
20	0.159231			0.156332
21				0.156351
22				0.156297
23				0.156324
24				0.156289
25				0.156322
26				0.156300
27				0.156335
28				0.156356353
29				
30				

given in table 4. We made biased estimations for the amplitudes with $v=0.5875$ and the results are

$$
\begin{equation*}
B=1.03 \pm 0.03 \quad C=0.161 \pm 0.003 \quad D=0.49 \pm 0.02 \tag{14}
\end{equation*}
$$

The amplitude ratios C / B and D / B are estimated directly and the results are discussed in section 6.

6. Discussion and conclusion

Meir [21] pointed out that the amplitude ratio can be calculated both more accurately and with less effort as a direct ratio than by making individual estimates and taking their quotient. The generating function for the series whose coefficients are these ratios has a simple pole at $x=1$ (where x is the dummy variable of the generating function). The residue at the pole is the required amplitude ratio.

We define two ratios such that

$$
\begin{equation*}
r_{n}=G_{n}^{2} / R_{n}^{2} \quad s_{n}=M_{n}^{2} / R_{n}^{2} . \tag{15}
\end{equation*}
$$

Table 6. The ratios s_{n} for the SC, DA, BCC and FCC lattices.

n	SC	BCC	FCC	DA
1	0.500000	0.500000	0.500000	0.500000
2	0.472222	0.479167	0.486111	0.458333
3	0.469072	0.477401	0.480440	0.451220
4	0.466071	0.473821	0.477512	0.452273
5	0.466674	0.473677	0.475855	0.455491
6	0.466061	0.472453	0.474876	0.455385
7	0.466872	0.472673	0.474283	0.457063
8	0.466818	0.472174	0.473922	0.458213
9	0.467533	0.472463	0.473707	0.459819
10	0.467648	0.472251	0.473586	0.460480
11	0.468249	0.472535	0.473529	0.461661
12	0.468414	0.472454	0.473514	0.462325
13	0.468918	0.472715	0.473529	0.463284
14	0.469094	0.472699		0.463803
15	0.469520	0.472933		0.464575
16	0.469692	0.472952		0.465026
17	0.470057			0.465670
18	0.470220			0.466051
19	0.470536			0.466593
20	0.470687			0.466924
21				0.467389
22				0.467678
23				0.468080
24				0.468336
25				0.468689
26				0.468916
27				0.469439710
28				
29				
30				

These ratios are given in tables 5 and 6, respectively, for the simple cubic lattice, the diamond lattice, the body-centred cubic lattice and the face-centred cubic lattice.

Among the four lattices, the diamond lattice has the smallest coordination number (four) which means that it is relatively easy to count SAWs on the diamond lattice. We made biased estimations using the method of Padé approximants. For the simple cubic lattice, we found that

$$
\begin{equation*}
C / B=0.158 \pm 0.002 \quad D / B=0.477 \pm 0.002 \tag{16}
\end{equation*}
$$

For the body-centred cubic lattice, we found that

$$
\begin{equation*}
C / B=0.158 \pm 0.003 \quad D / B=0.477 \pm 0.003 \tag{17}
\end{equation*}
$$

For the face-centred cubic lattice, we found that

$$
\begin{equation*}
C / B=0.158 \pm 0.004 \quad D / B=0.477 \pm 0.004 \tag{18}
\end{equation*}
$$

For the diamond lattice, we found that

$$
\begin{equation*}
C / B=0.158 \pm 0.002 \quad D / B=0.477 \pm 0.002 \tag{19}
\end{equation*}
$$

We did not consider corrections to the scaling, which may be the reason that our estimated value of the universal amplitude ratio C / B is slightly smaller than the corresponding value given by Li et al [10].

Acknowledgments

This research is supported by the National Science Council of ROC under grant no NSC90-2112-M007-029. We are grateful for the assistance of the National Center for HighPerformance Computing.

References

[1] de Gennes P G 1979 Scaling Concepts in Polymer Physics (Ithaca, NY: Cornell University Press)
[2] Cardy J L and Guttmann A J 1993 J. Phys. A: Math. Gen. 262485
[3] Nienhuis B 1982 Phys. Rev. Lett. 491062
[4] Nienhuis B 1984 J. Stat. Phys. 24731
[5] Cardy J L and Saleur H 1989 J. Phys. A: Math. Gen. 22 L601
[6] Guttmann A J and Yang Y S 1990 J. Phys. A: Math. Gen. 23 L117
[7] Lam P M 1990 J. Phys. A: Math. Gen. 23 L325
[8] Caracciolo S, Pelissetto A and Sokal A D 1990 J. Phys. A: Math. Gen. 23 L969
[9] Lin K Y and Huang J X 1995 J. Phys. A: Math. Gen. 283641
[10] Li B, Madras N and Sokal A D 1995 J. Stat. Phys. 80661
[11] MacDoanld D, Joseph S, Hunter D L, Moseley L L, Jan N and Guttmann A J 2000 J. Phys. A: Math. Gen. 33 5973
[12] MacDonald D, Hunter D L, Kelly K and Jan N 1992 J. Phys. A: Math. Gen. 251429
[13] Guttmann A J 1987 J. Phys. A: Math. Gen. 201839
[14] Guttmann A J 1989 Phase Transitions and Critical Phenomena vol 13 ed C Domb and J L Lebowitz (New York: Academic) pp 1-234
[15] Guttmann A J 1989 J. Phys. A: Math. Gen. 222807
[16] Butera P and Comi M 1997 Phys. Rev. B 568212
[17] Martin J L, Sykes M F and Hioe F T 1967 J. Chem. Phys. 463478
[18] McKenzie S 1979 J. Phys. A: Math. Gen. 12 L267
[19] Guttmann A J 1987 J. Phys. A: Math. Gen. 201839
[20] Majid I, Djordjevie Z V and Stanley H E 1983 Phys. Rev. Lett. 511282
[21] Meir Y 1987 J. Phys. A: Math. Gen. 20 L349

